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I. INTRODUCTION

This report discusses research on the development of a statistically
based model for predicting human head/neck impact acceleration injury.

Model development is focused on those situations in which the torso is well-
restrained, but the head and neck are unrestrained. One example, of course,
is the Navy pilot in the cockpit of his plane.

The dbjective of the research discussed here is the development of a
model that can adequately predict the probability of head/neck injury based
on head dynamic response data. Once this objective is met, the model, and the
information it provides, should be a major component in development of im-
proved restraint systems and other protection methods.

In order to provide a basis for comparison, three classes of prediction
models are considered in this report. One class is based on head dynamic re-
sponse variables only, another is based on sled acceleration profile terms only,
and the third class is based on the combined set of independent variables. All
of the prediction models are of the same functional type as those considered

in previous Desmatics technical reports [6]), [7], [8]:
k -1
P(x) = {1+exp[-(B,+ IR,x,)]}
0 1 i1
where:
5'-(x1,...,xk) denotes the set of independent variables considered,
(Bo,Bl,...,Bk) denotes a set of parameter values,
and P(x) denotes the true probability of injury corresponding to x.
This type of model was previously applied to observed data from a set of

28 -Gx accelerator rums involving subhuman primates (Rhesus monkeys) with

securely restrained torso and unrestrained head [7]. The data was collected
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by the Naval Biodynamics Laboratory (NBDL) as part of its research effort on
impact acceleration injury prevention. The NBDI data base now consists of 68
-Gx accelerator runs. (The 28 runs that were analyzed previously constitute i
a subset of the existing data.) In addition to examining this larger data
set, this report considers additional independent variables. The variables
comprising the former data set and the additions to the new one are listed in ’

Table 1.

The data base is used to develop the "best' one-variable, two-variable
and three-variable models for each of the three classes. In the context here,
the "best" model is the one which maximizes the log likelihood function at
each stage [4). (In all cases, the contribution of additional terms beyond
the three-variable models was negligible.) The predictions from the 'best"

models are compared with the observed results to evaluate performance.




Sled Profile Variables

L o

*]1. Peak acceleration (G)
*2., Rate of acceleration onset (G/sec)

3. Duration of peak acceleration (msec)

Head Dynamic Response Variables

| *1, Peak resultant angular acceleration (rad/secz)
*2. Peak resultant linear acceleration (m/secz)
*3, Peak resultant angular velocity (rad/sec)
4. Peak x-component of angular acceleration (rad/secz)
5. Peak y-component of angular acceleration (rad/secz)
6. Peak z-component of angular acceleration (rad/secz)
7. Peak x-component of linear acceleration (m/secz)

8. Peak y-component of linear acceleration (m/secz)

9. Peak z-component of linear acceleration (m/secz)

10, Peak x-component of angular velocity (rad/sec)
11. Peak y-component of angular velocity (rad/sec)

12, Peak z-component of angular velocity (rad/sec)

*Denotes a variable in the former data set.

Table 1: Independent Variables Available for Model Building
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II. MODEL CONSTRUCTION

As mentioned in the previous section, the current NBDL data base con-~
sists of 68 observations. However, because of missing data on five of these
runs, only 63 observations were used in model construction. Since some of the
monkeys were run more than once, dependence exists in the data. However, in
model development the assumption 1s made that any resulting bias in the param-
eter estimates is small. In fact, if there is a bias, it should result in a
model that overpredicts probabilities. This is, of course, the best direction
for model bias, since it provides an extra margin of safety.

Since the occurrence or nonoccurrence of injury is difficult to determine,
the criterion of fatality is used in the model building process. The models
are thus fatality prediction models. The data for all 63 observations is pre-
sented in Table 2. 1In this table, the observed probability of fatality for a

glven accelerator run is denoted by 1 for a fatal run and O for a nonfatal run.
A. DETERMINATION OF APPROPRIATE MODELS

A forward selection method [1,2] was used to determine the inclusion of
important variables. Importance of each of the variables was determined by
likelihood-ratio tests [3] that are used in conjuction with nested models.
This invdlved computing the following quantities:

Ij.=-2 log likelihood for model contéining (xl,...,xk).

and L,=-2 log likelihood for model containing (xl,...,xk+1).

2

Under the null hypothesis that the additional variable x +1 provides no im-

ki

provement in the model, the statistic Ll--L2 has an approximate Chi-square
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Run Number
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Probability
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9.9 641 55.6
10.0 753 51.0
61.1 3381 17.6
61.1 677 18.3
10.0 664 54.9
5.6 2138 51.0
45.0 421 26.4
46.5 2649 27,3
10.1 1470 61,2
5.3 986 56.0
4.2 4398 16,3
78.3 5111 16.1
9.8 599 51.9
10.0 950 54.4
10.4 4630 49,6
41.6 1804 24,0
10.0 726 47,0
5.2 1805 73.5
87.9 5660 15.3
10.1 661 53.3
5.3 1739 76.7
64,1 3672 17.6
63.7 3786 18,7
10.5 558 48.9
62.4 4111 21.3
82.7 6287 15.7
10.2 612 52.2
104,35 8180 13.7
10.3 1578 55.6
10.2 671 55.0
105.3 8769 13.6
4.3 352 1.0
5.2 1453 59.86
44,5 2154 25.9%
46,3 2201 26.3
192.9 29126 9.3
10.3 1533 49.6
38.3 3512 27.2
38.5 3832 7.3
38.2 3478 6.9
39.4 3829 7.3
39.6 3775 26.6
36.9 1612 26.5
108.7 133398 18.5
110.4 9306 14.2
108.6 9303 4.6
105.5 17949 1.0
123.0 20762 8.7
83.8 6334 15.8
131.4 14980 3.6
83.27 7352 7.1
130.7 12698 2.9
106.9 16586 9.2
128.2 21421 7.2
34.8 1614 1.5
33.3 1561 8.1
32.5 1585 28.9
32.5 1413 27.9
74.8 5690 16.8
6.7 5618 16.9
1%.6 6232 1741
75.3 6308 17.2
126.4 13814 13.6
Table 2: The Data
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The Data Set (continued)
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distribution with one degree of freedom. The hypothesis may be tested by com-
paring the value of Ll--L2 with the upper percentage points of the Chi-square

distribution.

B. HEAD DYNAMIC REPSONSE VARIABLES

As previnusly mentioned, up to three head dynamic response variables were
considered in model development. As a consequence of the forward selection pro-
cedure used, (i.e., at each stage the variable that maximized the log likelihood
function was entered next) the variables in the '"best" one-variable and two-vari-
ahle models constituted a subset of the variables chosen for the 'best'" three-
variable model. A statistical analysis of the data indicated that the best one-
variable, two-variable, and three-variable models are those based on, respective-
ly, the three sets

1) L3
(2) xl, x2

(3) xl, Xo» x3

where
x, denotes the peak z-component of head linear acceleration measured in
meters/sec?2,
X, denotes the peak head resultant linear acceleration measured in meters/

secz,

and X4 denotes the peak y~component of head angular acceleration measured in
radians/sec?.

Because of the nesting in these models, the relative contribution of each
of the variables may be tested. The log likelihoods, the Chi-square values and
assoclated p~values presented in Table 3 contain the relevant information. 1In

the first stage, x, was tested to determine whether it significantly improved a

1

model which assumed constant probability over all the values of the three head
-7~
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Variable Set -2 Log Likelihood Chi~-Square p-value
Constant Only 55.13 ]
X 25.58 29.55 0.00
X)X, 24.06 1.52 0.22
X)9X,rXy 20.64 3.42 0.06

Yy denotes peak z-component of head linear acceleration
Ya denotes peak head linear resultant acceleration

y3 denotes peak y-component of head angular acceleration

Table 3: Head Dynamic Response Variable Sets with
-2 Log Likelihood and Chi-Square Values
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dynamic response variables. The observed Chi-square value of 29.55, which is

statistically significant at the 0.001 level, indicated that this variable did
result in an improved model.

The second stage of testing involved consideration of the addition of
1 Variable X,

was the next to enter the model. The addition of Xy» which resulted in an

another variable to the model which included only variable x

observed Chi-square value of 1.52 and an associated p-value of 0.22, did
little to improve the model. However, when Xy was added to the model con-

taining xland Xy the Chi-square value of 3.42 and its corresponding p-value
of 0.06 indicated that there was an enhancement to the model.
Thus, based on the data available, the best one-variable, two-variable and

three-variable head dynamic response models are:
B(x,) = (1+exp[~(-5.7852 - .0048099x) 1} 1)
f(xl,xz) -—-{1.+exp[-(—6.4795--.0035Mo6x1+.0008661){2)]}-1 (2)

ﬁ(xl,xz,x3) ={1+exp[-(~8.1485 - .004019x, + .001901x, + .000117x3)]}'l

2

(3)
where ﬁ(x) denotes the predicted probability. The discussion of the contri-

bution supplied by each of the variables to the model indicates that either

model (1) or (3) could be chosen for prediction purposes. Table 4 presents,
for both models, a comparison of observed (i.e., 0 or 1) and predicted prob-
ability, where the observations are arranged in order of increasing predicted

probability for model (1).
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A Comparison of Observed and Predicted
Probabilities for Head Dynamic Response

Models (1) X and (3) Xps Xgs Xge

Table 4
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C. SLED PROFILE VARIABLES

The same technique used in the previous section was also employed for
choosing the "best" one-variable, two-variable, and three-variable sled

profile models. The sled profile variables under consideration here are

denoted by 205 2,5 and z3s where:
z, is the peak sled acceleration measured in G's,
z, is the duration of peak measured in milliseconds,
and z4 is the rate of sled acceleration onset measured in G/sec.

As Table 5 i1indicates, the "best' one-variable model is based on z The

1

Chi-square value of 38.43 for z, and its corresponding p-value of 0.001 re-

1

veals that peak sled acceleration is essential to the sled profile model.

The resulting model is given by:

ﬁ(zl) ={1+exp(-(-12.10 + .11462z1)]}'1 (4)

The second stage of testing provided the following "best" two-variable
model:
B(z;,2,) = {1 +exp[~(-6.3859 + . 11239z - .304022,)1} " (5)

However, the addition of z,, duration of peak, did little for the betterment

2!
of the model, with a Chi-square value of 1.37 and a p-value of 0.24.

Subsequently, in the third stage, 2z, was added to the model containing z

3

and z,- The resulting three-variable model is:

5(21,22,23) ={1-+exp[-(-5.6780-+.1039121'-.349062 -0-.0000355723)]}-'1

(6)

2

The Chi-square value of 0.01 for z3 is evidence that this variable is not an

important addition to the model.

As indicated by these results, the 'best" sled profile model is the one-

variable model (4) containing only peak sled acceleration. Table 6 presents,

-11-
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Variable Set -2 Log Likelihood Chi-Square p-value

Constant Only 55.13
z, 16.70 38.43 0.00
2,12, 15.33 1.37 0.24
21225124 15.32 0.01 0.93

z, denotes peak sled acceleration

1

z, denotes duration of peak

z3 denotes rate of onset

Table 5: Sled Acceleration Profile Variable Sets with
-2 Log Likelihood and Chi-Square Values
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for this model, a comparison of observed (i.e., 0 or 1) and predicted prob-
ability, where the observations are arranged in order of increasing predicted

probability.
§ D. COMBINED HEAD AND SLED VARIABLES

| The complete set of head dynamic response and sled profile variables
was also used in the development of a prediction model. As Table 7 indicates,
ylezl (peak sled acceleration) provided the best fitting one-variable model,
which is given by (4). The next term to enter the model was y2 (the peak
z~component of head angular velocity). This variable had a Chi-square value
of 2.42 with an associated p-value of 0.12. The resulting model is:

f(yl,yz) =--{1-+-ex1>[--(--13.582-!-.12863y1--.00821432y2)]}-l o))

The "best" three-variable model was obtained by introducing y35 z,

(duration of peak sled acceleration) into the model containing v and Yy

The resulting model is:
?(yl,yz,y3)- {14-exp[-(-6.9958-+.12234yl-.008002y2— .37337y3)]}.1 (8)
However, the Chi-square value of 1.51 and its corresponding p-value of 0.22

indicate that duration of peak did not improve much on the "best” two-variable

model.

Rl T —

Thus, the "best" combined (head dynamic response and sled profile) model
appears to be the two-variable model containing peak sled acceleration and the
peak z-component of head angular velocity. Table 8 shows the agreement between

predictions and observations that is obtained for this model.

Lt ot Sure i
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Variable Set -2 Log Likelihood Chi-Square p-value
Constant Only 55.13
¥, 16.70 38.43 0.00
Y1, 14.28 2.42 0.12
Y12Y90Y3 12.77 1.51 0.22

Y1 denotes peak sled acceleration
Y, denotes peak z-component of head angular velocity

Y3 denotes duration of peak sled acceleration

Table 7: Combined Variable Sets with -2 Log Likelihood
and Chi-Square Values
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E. CLASSIFICATION OF OBSERVATIONS

The predicted probabilities from the '"best" models developed in the
previous sections can be used to classify observations into groups. 1In other
words, an observation can be classified as nonfatal if the predicted probability
is less than or equal to some specified cut~off value. In particular, each such
value yields a classification matrix of the form given in Figure 1. From this
figure, the following probabilities can be defined:

P, = Prob(observe fatality | predict nonfatality) =B/(B+D)

1
and
P2 = Prob(observe fatality I predict fatality) =A/(A+C).
Ideally, it is desired to have P1=0 and P2 =1, Of course, Pl is the more

critical probability of the two.

Graphs of Pl versus P2 (as a function of the cut-off value) compare the
performance of the "best' one-variable, two-variable, and three-variable models.
For example, Figure 2 compares the models based on the head dynamic response
variables with those based on sled acceleration variables. The improvement
that is obtained by going from the "best" one-variable to the '"best" three-

variable model (in terms of approaching the ideal situation, i.e., P1=0 and PZ

= 1) can be seen graphically within each variable set.




Predicted
P
Observed Fatality Nonfatality
Fatality A B
Nonfatality c D

P1 = B/(B+D)

P2 = A/(A+C)

Figure 1: Classification Matrix




10 ]

p

Optimum
Situation (P1=O, P

2=

H1
p )
- 401
o} +- —t < —t- >
.05 .10 .15

Hl denotes best one-variable head model
H3 denotes best three-variable head model
S1 denotes best one-variable sled model

S$3 denotes best three-variable sled model

Figure 2: Comparison of Models
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III. SUMMARY

Using an identical data base, three different models were constructed,
one based on sled profile variables, another based on head dynamic response
variables, and the last one comprised of the combined set of independent
variables. The "best" head dynamic response model appeared to be the three-
variable model containing the peak z-component of head linear acceleration,
peak head linear resultant acceleration, and the peak y-component of head
angular acceleration. The '"best" sled acceleration profile model was the one-~
variable model consisting of peak sled acceleration alone. The 'best" combined
(head dynamic and sled profile) model was the two-variable model consisting of
peak sled acceleration and the peak z-component of head angular velocity.

The statistical technique of testing the contribution of successive terms
in nested models [3] cannot be employed for models involving different variables
(i.e., no formal test exists for determining whether or not one model provides
a significant improvement over another). However, a relative assessment of the
various models can be made on the basis of the log likelihood values. In par-
ticular, for models containing the same number of variables, the one which max-
imizes the log likelihood value would be favored. In this regard, it can be
seen from Table 9 that the three~variable head dynamic response model does not
do any better than the one-variable model based on peak sled acceleration alone.
Similarly, it appears that the combined two-variable model does better than the
three-variable head dynamic response model. 1In addition, graphs of the prob-
ability of correct classification (i.e., observing fatality given that fatal-~
ity is predicted) indicate that this probability is maximized sooner for the
combined two-variable model.

There still remains the question as to why the head dynamic response models

=20-




R

Variable
Type

Head Sled Combined
Best Dynamic Acceleration Variable
Models Response Profile Set
One~Variable -12.79 -8.35 ~8.35
Two-Variable -12.03 -7.66 ~7.14
Three~Variable -10.32 ~7.66 -6.38

Table 9: Log Likelihood Values for Best Models
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did not perform as well as the models involving sled profile variables. It 1
was speculated in [7] that this result may be due to any or all of the follow-

ing: (a) the wrong variables were being extracted from the head dynamic re-

sponse time traces, (b) inaccurate measurements were being made on the correct

variables, and (c) the small sample size had produced a spurious result.

Since the sample size appears to be sufficiently large here, it is be-

bl

é lieved that (c) can be ruled out. In addition, (b) also appears to be an un-
E

likely explanation, since the effect of minor measurement inaccuracies would

most likely be negligible in larger samples. However, it is still possible
that there exists more valuable information that can be extracted (via the
method of principal components [5], for example) from the head dynamic re-
sponse time traces.

This latter contention is borne out by the fact that the head dynamic vari-
able found to be most important was the peak z-~component of head linear ac-
celeration, which was not available for consideration as a variable in the
original report on model development [7]. This indicates that, in some sense,
the current set of twelve head dynamic response variables provides better in-

formation than the original set of three variables.
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